УДК 531.8 ВАК 05.02.18

Ключевые слова: регулируемый электропривод, полоса пропускания частот, диапазон регулирования скорости, математическая модель

РАЗРАБОТКА РЕГУЛИРУЕМЫХ ЭЛЕКТРОПРИВОДОВ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Владимир СЛЕПЦОВ, Сергей СКВОРЦОВ, Алексей ОРЛОВ, Наталья КОВАЛЕВА, Андрей РОМАНОВ, Павел ШВЕЦ

Рассмотрены вопросы анализа технических характеристик электроприводов с двигателями постоянного тока на стадии проектирования.

В целом ряде технологических устройств необходимы механизмы с неизменной точкой ввода инструмента в рабочую область. В частности, они применяются в измерительных приборах и робототехнических комплексах, предназначенных для проведения хирургических операций, созданию которых и посвящена предлагаемая статья.

Механизмы с постоянной точкой ввода инструмента в рабочую область могут быть построены с использованием как шарнирных параллелограммов, так и ременных или зубчатых передач [1, 2], соответствующее применение которых может обеспечить равенство углов поворота входного и выходного звеньев.

При синтезе подобных механизмов необходимо учитывать функциональные и технические требования, определяемые условиями тех или иных хирургических операций в разных областях медицины [3, 4]. Исходя из них выбираются кинематическая схема и структура системы управления, содержащая регулируемые по скорости электроприводы (РЭП) [5] и обладающая подходящими мощностными и динамическими характеристиками, обеспечивающая перемещение рабочего инструмента с достаточной точностью. Следует отметить, что точностные и скоростные характеристики механизмов в большой степени зависят от технических характеристик РЭП, следовательно их анализ (особенно на этапе проектирования) является чрезвычайно важным. Вместе с тем, проведение такого анализа представляет собой серьезную задачу.

Поясним это на примере исследования разработанного в ИМАШ им. А.А. Благонравова РЭП с электродвигателем постоянного тока типа WG3929, транзисторным сервоусилителем, датчиком скорости на базе импульсного фотоэлектрического датчика с числом импульсов 2000 импульсов/оборот. Функциональная схема РЭП представлена на рис. 1.

Эта схема отличается от традиционной [5] тем, что в контуре тока применен датчик потребляемого тока (имеющего только положительное значение независимо от направления вращения), а не датчик тока якоря (имеющего разнознаковые значения в зависимости от направления вращения). Кроме того, регулятор скорости выполнен в цифровом виде, а контур тока – в аналоговом.

Следует отметить, что контур тока настроен на технический оптимум, а контур скорости – на симметричный оптимум [6]. Из условий соответствующей настройки определяются параметры регуляторов скорости и тока.

Проведем исследование РЭП путем подачи ступенчатого сигнала задания скорости U_{зс} различной величины на вход математической модели и анализа реакции на эти сигналы.

В настоящее время в России действует ГОСТ 27803-91 «Электроприводы регулируемые для металлообрабатывающего оборудования и промышленных роботов. Технические требования», регламентирующий основные технические характеристики РЭП (диапазон регулирования скорости D_c и полосу пропускания F_c). При этом для различных технологических машин требуется $D_c \ge 1000$ Гц, а $F_c \ge 100$ Гц. Кроме того, при использовании линейных датчиков скорости для определения D_c достаточно проанализировать поведение РЭП (величину перерегулирования и пульсации) при минимальных и максимальных скоростях.

Следует отметить, что для получения результатов моделирования, соответствующих реальным, необходимо, чтобы математическая модель позволяла учитывать схемотехническую реализацию РЭП

Puc. 1.

Функциональная схема РЭП: РС, РТ – соответственно регуляторы скорости и тока; ГТС – генератор треугольного сигнала; ШИМ – широтно-импульсный модулятор; УГР – устройство гальванической развязки; ДТ – датчик тока; ДПТ – двигатель постоянного тока; ИДС – импульсный датчик скорости; VT1 – VT4, VD1 – VD4 – силовые транзисторы и диоды усилителя мощности; U_{3C}, U_{3M} сигналы задания скорости и момента (тока) соответственно; U_{лс}, U_{лт} – сигналы с датчика скорости и тока соответственно; *U*_{гтс} – периодический треугольный сигнал; U_v – управляющий сигнал; U_{шим} – промодулированный управляющий сигнал; U_{vm} $(U_{\nu m}1 - U_{\nu m}4) - сигналы управле$ ния силовыми транзисторами

Рис. 2. Схемотехническая модель РЭП с транзисторным сервоусилителем и электродвигателем постоянного тока типа WG3929: W_{pc}(S), W_{pt}(S) – передаточные функции регуляторов скорости и тока; R, L – активное сопротивление и индуктивность якорной цепи двигателя постоянного тока; K_w, K_v – коэффициент передачи по моменту и коэффициент противоЭДС; J – момент инерции двигателя постоянного тока; K_{дт}, K_{дс} – коэффициенты передачи датчиков тока и скорости; F1–F5 – схемотехнические нелинейности

(в частности учитывать режим широтно-импульсной модуляции сервоусилителя и эффект квантования по времени регулятора скорости). Разработанная авторами математическая модель РЭП представлена на рис. 2.

Значения параметров: a11 = 10 В; a11 = 10 В; a21 = 10 В; a21 = 10 В; a21 = 10 В; a21 = 10 В; R = 3,3 Ом; L = 0,001 Гн; $K_{\rm M} = 0,1; J = 0,00005$ кг; $K_{\rm дr} = 3; K_{\rm v} = 0,03; K_{\rm дc} = 0,06$ В; a31 = 12 В;

характеристики $U_{\rm rrc}$ – амплитуда треугольного сигнала 10 В, частота f = 2 кГц.

Параметры регулятора тока при настройке контура на технический оптимум определяются из следующего уравнения [7]:

$$W_{\mathrm{pT}}(S) \times \frac{K_{\mathrm{y}}}{1+K_{\mathrm{y}}S} \times K_{\mathrm{AT}} \times \frac{1}{R+LS} = \frac{1}{2 \times \tau \times S(1+\tau S)},$$

где: $\tau = T_y$; K_y и T_y – коэффициент передачи и постоянная времени линеаризованного транзисторного сервоусилителя, причем K_y = 1,2, T_y = 0,0001 с.

Откуда:

$$W_{\rm pt}(S) = \frac{R + LS}{2 \times K_{\rm y} \times K_{\rm AT} \times T_{\rm y} \times S} = \frac{4500(1 + 0.0003S)}{S}$$

Параметры линеаризованного регулятора скорости при настройке контура на симметричный оптимум определяются из следующего уравнения [5]:

$$W_{\rm pT}(S) \times \frac{1}{K_{\rm dT} (1+2 \times T_{\rm y}S)} \times K_{\rm M} \frac{1}{JS} \times K_{\rm dc} =$$
$$= \frac{1+8 \times T_{\rm y}S}{32 \times T_{\rm y}^2 \times S^2 (1+2 \times T_{\rm y}S)}.$$

Откуда:

$$W_{\rm pT}(S) = \frac{J \times K_{\rm AT}(1 + 8 \times T_{\rm y}S)}{32 \times K_{\rm AT} \times K_{\rm AC} \times K_{\rm M} \times T_{\rm y}^2 \times S} = \frac{25000(1 + 0.0008S)}{S}$$

Необходимо отметить, что, как правило, в процессе исследования параметры регуляторов корректируют, что связано с учетом нелинейностей РЭП. Кроме того, для учета влияния эффекта квантования регулятора скорости по времени последовательно с ним вводится апериодическое звено с постоянной времени *Т*_{кв}, равной времени расчета ПИ-алгоритма.

На рис. 3 и 4 представлены тахограммы РЭП при входных сигналах $U_{3c} = +/-0,01$ В и $U_{3c} = +/-10$ В.

Из рисунков видно, что на больших сигналах задания скорости влияния времени квантования $T_{\rm kB}$ практически нет, а вот на малых оно значительно.

При $T_{\rm KB} = 0,001$ с (что соответствует частоте расчета регулятора скорости, равной 150 Гц) РЭП практически неработоспособен, при $T_{\rm KB} = 0,0008$ с (что соответствует частоте расчета регулятора скорости, равной 200 Гц) пульсации в тахограмме очень велики и лишь при $T_{\rm KB} = 0,0005$ с (что соответствует частоте расчета регулятора скорости, равной 300 Гц) влиянием времени квантования можно пренебречь.

Рассмотрим теперь реакцию РЭП на входной сигнал 0,01 В при частоте ШИМ 1000 и 500 Гц. На рис. 5 приведены соответствующие тахограммы.

Из рисунка видно, что пульсации скорости с уменьшением частоты ШИМ увеличиваются по сравнению с рис. Зб на 20 и 40% соответственно. В разрабатываемом РЭП выбрана *f* = 300 Гц.

Рис. 3. Входной сигнал U_{3c} = +/- 0,01 В (*a*) и тахограммы в схемотехнической модели РЭП при $T_{_{KB}}$ = 0,0005 с (*b*), $T_{_{KB}}$ = 0,0008 с (*b*), $T_{_{KB}}$ = 0,001 с (*c*)

100

Puc. 4. Входной сигнал U_{3C} = +/− 10 В (a) и тахограммы в схемотехнической модели РЭП при T_{кв} = 0,0005 с (б), T_{кв} = 0,0008 с (в), T_{кв} = 0,001 с (г)

Рис. 5. Тахограммы в схемотехнической модели РЭП при U_{3c} = 0,01 В: a - f = 1000 Гц, b - f = 500 Гц

С целью проверки полосы пропускания рассмотрим теперь реакцию РЭП на синусоидальные входные сигналы. На рис. 6 приведены графики входных сигналов и тахограммы РЭП.

Из рисунка видно, что в диапазоне частот до 100 Гц тахограммы по сравнению со входными сигналами обладают несущественными искажениями (сдвиг по фазе не превышает 30°, падения по амплитуде не наблюдается).

Проведенные исследования позволяют сделать следующие выводы:

- Разработанный электропривод обладает хорошими техническими характеристиками: D_c ≥ 1000 Гц и F_c ≥ 100.
- При исследовании электроприводов прецизионных технологических машин необходимо учитывать работу усилителей мощности в режиме широтноимпульсной модуляции, вызывающей пульсации в переходных процессах.
- 3. Для уменьшения пульсаций скорости до допустимого уровня (5% от минимальной скорости) следует выбрать частоту ШИМ *f* 2000 Гц.

Рис. 6. Входные сигналы: $a - U_{3c} = 0,1 \times \sin(62t), 6 - U_{3c} = 0,1 \times \sin(620t), в и г - тахограммы в схемотехнической модели РЭП$

4. Для уменьшения пульсаций скорости до допустимого уровня следует обеспечить частоту расчета ПИ-алгоритма регулятора скорости не менее 300 Гц.

ЛИТЕРАТУРА

102

- Крайнев А.Ф. Словарь справочник по механизмам / 2-е изд. М.: Машиностроение. 1987. 560 с.
- Чернецов Р., Велиев Е., Глазунов В., Скворцов С., Ковалева Н. Определение числа степеней свободы механизмов с постоянной точкой ввода инструмента // СТАНКОИНСТРУМЕНТ. 2019. № 4 (017). С. 80-83.
- 3. Велиев Е.И., Ганиев Р.Ф., Глазунов В.А., Филиппов Г.С., Терехова А.Н. Разработка и решение задачи о положениях механизма параллельно-последовательной структуры для хирургических операций как альтернативы роботу Da Vinci // Проблемы машиностроения и надежности машин. 2019. № 4. С. 3–13.
- 4. Краснопольский В.И., Попов А.А., Мананникова Т.Н., Федоров А.А., Слободянюк В.А., Коваль А.А., Мироненко К.В. Робот-ассистированная хирургия в онкогинекологии // Онкогинекология. 2014. № 3. С. 23.
- Терехов В.М. Системы управления электроприводов: Учебник для студентов высших учебных заведений. М.: Издательский центр «Академия», 2005. 304 с.

- Афонин В.Л. и др. Обрабатывающее оборудование нового поколения. Концепция проектирования / Под ред. В.Л. Афонина. М.: Машиностроение, 2001. 256 с.
- Справочник по автоматизированному электроприводу / Под ред. В.А. Елисеева и А.В. Шинянского. М.: 1983. 616 с.

СЛЕПЦОВ Владимир Владимирович –

доктор технических наук, главный научный сотрудник ИМАШ им. А.А. Благонравова РАН

СКВОРЦОВ Сергей Александрович -

кандидат технических наук, старший научный сотрудник ИМАШ им. А.А. Благонравова РАН

ОРЛОВ Алексей Викторович -

программист ИМАШ им. А.А. Благонравова РАН

КОВАЛЕВА Наталья Львовна -

кандидат технических наук, старший научный сотрудник ИМАШ им. А.А. Благонравова РАН

РОМАНОВ Андрей Александрович -

инженер ИМАШ им. А.А. Благонравова РАН

ШВЕЦ Павел Александрович –

аспирант ИМАШ им. А.А. Благонравова РАН

Организатор

www.rusweld-expo.ru

При поддержке

Под патронатом

для процессов сварки и резки»

Международная специализированная выставка «Оборудование, технологии и материалы

Россия, Москва, ЦВК «ЭКСПОЦЕНТР»

